Ödev Ara Bul Yap
- Ana Sayfa
- Ziyaretci defteri
- iletisim
- Ataturk
- Turkce
- turkce video
- Matematik
- sayilar
- ebob ekok
- rasyonel sayilar
- ondalikli sayilar
- basit esitsizlikler
- mutlak deger
- uslu sayilar
- koklu ifadeler
- Denklem cozme
- oran oranti
- carpanlara ayirma
- sayi problemleri
- kumeler
- matematik video
- Forum
- Fen ve Teknoloji
- edebiyat
- Tarih
- Osmanli Kronoloji
- Osmanli Beyligi Ve Osmanli Kurulusu
- fetret devri
- yukselme devri
- Duraklama Devri
- Gerileme ve Son
- Osmanli da muessese ve medeniyet
- ingilizce
- ingilizce Videolu Dersler
- Fen Biglisi Videolar
- Fizik Videolar
- Yeni sayfanın başlığı
- www.turkkanweb.net
- www.lfsyamalari.com
- lfsyamalariindir.blogspot.com
- Lfs Yamalari
carpanlara ayirma
A. ORTAK ÇARPAN PARANTEZİNE ALMAEn az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.
B. ÖZDEŞLİKLER
1. İki Kare Farkı - Toplamı
1) a2 – b2 = (a – b)(a + b)
2) a2 + b2 = (a + b)2 – 2ab
3) a2 + b2 = (a – b)2 + 2ab
2. İki Küp Farkı - Toplamı
1) a3 – b3 = (a – b)(a2 + ab + b2 )
2) a3 + b3 = (a + b)(a2 – ab + b2 )
3) a3 – b3 = (a – b)3 + 3ab(a – b)
4) a3 + b3 = (a + b)3 – 3ab(a + b)
3. n. Dereceden Farkı - Toplamı
1) n bir sayma sayısı olmak üzere,Kaynakwh webhatti.com:
xn – yn = (x – y)(xn – 1 + xn – 2y + xn – 3 y2 + ... + xyn – 2 + yn – 1) dir.
2) n bir tek sayma sayısı olmak üzere,
xn + yn = (x + y)(xn – 1 – xn – 2y + xn – 3 y2 – ... – xyn – 2 + yn – 1) dir.
4. Tam Kare İfadeler
1) (a + b)2 = a2 + 2ab + b2
2) (a – b)2 = a2 – 2ab + b2
3) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
4) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)
n bir tam sayı ve a ¹ b olmak üzere,
• (a – b)2n = (b – a)2n
• (a – b)2n – 1 = –(b – a)2n – 1 dir.
------------------------------------------------------------
• (a + b)2 = (a – b)2 + 4ab
5. (a ± b)n nin Açılımı
Pascal Üçgeni
(a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.
Sonra n nin Paskal üçgenindeki karşılığı bulunarak kat sayılar belirlenir.
(a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (–) işareti konulur.
• (a + b)3 = a3 + 3a2b + 3ab2 + b3
• (a – b)3 = a3 – 3a2b + 3ab2 – b3
• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
----------------------------------------------------------
• a4 + a2 + 1 = (a2 + a + 1)(a2 – a + 1)
• a4 + 4 = (a2 + 2a + 2)(a2 – 2a + 2)
• a4 + 4b4 = (a2 + 2ab + 2b2)(a2 – 2ab + 2b2)
----------------------------------------------------------Kaynakwh webhatti.com:
a3 + b3 + c3 – 3abc =
(a + b + c)(a2 + b2 + c2 – ab – ac – bc)
C. ax2 + bx + c BİÇİMİNDEKİ ÜÇ TERİMLİNİN ÇARPANLARA AYRILMASI
ax2 + bx + c ifadesini çarpanlarına ayırırken birkaç yöntem kullanılır. Biz burada ikisini vereceğiz. En iyi öğrendiğiniz yöntemi daima kullanarak pratiklik sağlayınız.
1. YÖNTEM
1. a = 1 için,
b = m + n ve c = m × n olmak üzere,
2. a ¹ 1 İken
m × n = a, mp + qn = b ve c = q × p ise
ax2 + bx + c = (mx + q) × (nx + p) dir.
2. YÖNTEM
Çarpımı a × c yi,
toplamı b yi veren iki sayı bulunur.
Bulunan sayılar p ve r olsun.
Bu durumda,
daki ifade gruplandırılarak çarpanlarına ayrılır.
Bugün 13 ziyaretçi (15 klik) kişi burdaydı!